
The Last Word

The Democratization of Test Tools
by Lisa Crispin

Democratization is the transition from
authoritarian or semi-authoritarian
systems to democratic political systems,
where democratic systems are taken to
be those approximating to universal
suffrage, regular elections, a civil society,
the rule of law, and an independent
judiciary. (Wikipedia)

Some may not find it as dramatic as,
say, the fall of the Berlin Wall, but from
where I sit the world of test automation
has undergone a revolution. I’m on a team
in which testers, programmers, and product
directors collaborate to automate all of the
regression tests for each new feature we
deliver. Tests and production code are
delivered together. From my vantage point,
I work in the Republic of Testing, taking
advantage of test tools developed by teams
just like us.

Back in the ‘90s, when I automated
tests, I was limited to tools that worked
through the graphical user interface (GUI).
Programmers were busy with their own
work and weren’t available to give us
hooks for testing different layers of code.
I was lucky in that I usually worked
for managers who bought the tester-
recommended tools and gave us time and
training to master the proprietary scripting
languages. Only on one occasion did
someone tell me, “We spent $75,000 on
this test tool, so you’d better use it.” If we
automated 10 or 20 percent of our testing,
we were grateful.

The drumbeat of the revolution first
sounded for me in 2000, when I joined my
first agile team. It was amazing to see how
interested the programmers were in testing.
My teammates, all programmers, learned
how to automate unit tests—before even
writing the code to make them pass—
using an open source tool called JUnit.

Imagine—someone on a team like ours
had needed a robust, programmer-
friendly, easy-to-use unit test tool; written
it; and shared it with the world! Our
team could just decide, by consensus, to
use it! The test results even turned red
or green to show which tests passed!

And test automation was no longer a
chore just for people in a tester role; entire
software development teams were hugely
invested in successfully automating tests
that would let them safely and speedily
change code without sacrificing quality.
Testing through the GUI is difficult and
expensive, and I could imagine many
programmers saying, “Gee, it would be
pretty easy to test the code if we bypass
the GUI.” They started writing test
frameworks and harnesses. Other tools,
such as automated build tools and source
code control systems, were written
to support the testing and provide
quick feedback.

Some teams happily used their
homegrown tools to automate their tests.
Some frameworks and tools grew
into something bigger, and developer
communities formed across the world
to contribute to and support them.
Collaborative software development tools
such as Framework for Integrated Tests
and FitNesse grew out of agile projects.
These tools met the needs of people in
different roles and allowed them to
communicate better and work together.
Instead of having a tool imposed upon
them, business experts, testers, and
programmers had a framework to specify

How could it not cost $75,000?
But automating acceptance tests was

another story. I hadn’t heard of any open
source tools for automating tests beyond
the unit level, except for JUnitPerf. Then
again, it didn’t occur to me to look for
them! I stuck to my vendor tool and
listened to my programmer teammates
grumble about having to learn its scripting
language. More revolution was fomenting.

I’m certain other development teams
were grumbling about test tools they were
forced to use, or perhaps about having
to do manual regression testing. An
Orange Revolution of automation gained
momentum. My team heard about new
open source tools, such as HTTPUnit, and
tried them out. With the whole team
working on test automation, my team felt
good about automating as much as 50 to
60 percent of our acceptance tests, using a
combination of open source unit test tools
and vendor tools. Sometimes a tool got
voted down during a team meeting and
another was brought in. Short iterations
gave us room to experiment.

Participating in mailing lists and
attending user group meetings and
conferences, I met many other agile
development teams that were feeling a need
for more than just unit test automation.

Lisa Crispin says the future of test automation is working together.

42 BETTER SOFTWARE JULY/AUGUST 2006 www.StickyMinds.com

www.StickyMinds.com JULY/AUGUST 2006 BETTER SOFTWARE 43

The Last Word

and automate tests together. Here was a
way to both communicate expectations
from the customer side and verify that
those expectations were met.

At some point, though, you still have
to test the GUI. A team developing a Web-
based application needed a tool that
would give them feedback from the user
perspective quickly enough to keep up
with the pace of development. Efforts with
commercial tools failed, so they came up
with a homegrown tool—the open source
tool Canoo WebTest—that let them speci-
fy rather than program tests. Other teams
noticed that some programming and
scripting languages lent themselves to the
needs of test automators as well as ex-
ploratory testers. Web Application Test-
ing in Ruby (WATIR) is just one example
of what happens when people with both
programming and testing skills get to-
gether and solve automation problems.

These are just a few examples. The
scenario has repeated itself many times in
the past few years.

If the programmers join in, automating
tests is a collaborative effort. Not only

do we get automated regression tests,
but we also have an important reason to
sit down and talk every day about the
features we need to deliver. We have to
talk to the business stakeholders too,
and now we have a process and frame-
work to capture their input and give the
whole team continual feedback.

Test automation isn’t something
imposed on teams anymore. The days of
“We’ve spent all this money on this tool
to fix our automation problem, so use it,
by golly!” are (or should be) history.
Technical members of the team may
decide to code their own testing harness,
select one or more open source or com-
mercial tools, or customize those tools
with homegrown solutions. They collab-
orate with business stakeholders to en-
capsulate requirements into executable
tests. Tools aren’t selected by an autocrat-
ic manager but by team consensus. This
might involve vigorous debate over the
relative merits of various approaches, but
the outcome is much more productive.

I’m a tester on a team where automat-
ing 100 percent of the regression tests for

each new feature produced has become
routine. Test automation tasks, using dif-
ferent tools for different purposes, are part
of every iteration and aren’t just the job of
the team’s testers. Tests run via continual
builds throughout the day, so we learn
right away if a code change breaks an exist-
ing feature. Pretty civilized, if you ask me.

The future of test automation is every-
one working together to find good solu-
tions. Everyone on the team has an equal
stake in quality. I’m not saying test automa-
tion is easy. It’s not, but it’s a lot easier
when an entire team—programming, test-
ing, and analysis—takes it on. Every issue
of this magazine has articles that help lead
all of us into this bright testing future. Rip
those barricades down, and start solving
test automation problems as a team! {end}

Lisa Crispin has been a tester on agile
teams developing Web-based applications
since 2000. She co-authored Testing Extreme
Programming (Addison-Wesley, 2002) with
Tip House and is a regular contributor to
Better Software. Read more about Lisa’s
work at http://lisa.crispin.home.att.net.

